

Orifice Plates

Paddle & Universal Types Standard Concentric Counterbored Eccentric Quadrant Segmental Restriction

Orifice Flange Sets

Raised Face Weld Neck RTJ Weld Neck ANSI Class 150 thru 1500 Sizes 1/2" thru 24"

RTJ Holders

Integral Type Screw Type Snap Ring Type

Paddle Blinds & Spacers

Standard Individual Figure 8 (Spectacle) Type

Restriction Unions

NPT & Socket Weld Male NPT Flow Restrictor Female NPT Flow Restrictor Tube Fitting Restrictors

Flow Straighteners

Line Fit Tube Bundle Flange Fit Tube Bundle

Flow Nozzles

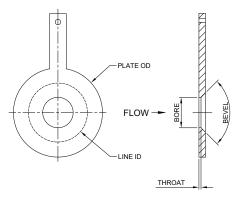
ASME Long Radius Flange Fit Integral Spool Piece

Venturis

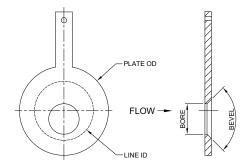
Welded Style Machined Style 15° Exit Cone 7° Exit Cone

Complete Meter Runs

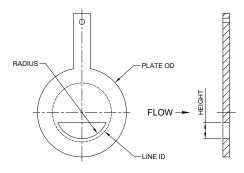
Orifice Plate with Flanges Upstream/Downstream Pipe Valve Manifold dP Transmitter Flow Computer Honed Pipe (up to 2") Sizes up to 12" ANSI Class 150 thru 1500


Industry Standards

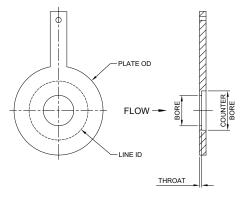
AGA 3 ASME MFC-3M ASME MFC-14M ISO 5167


Alloy Valves and Control

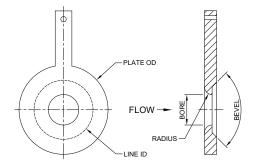
Orifice Plate Styles


Standard Concentric Orifice Plates

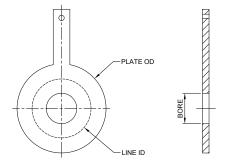
The AVCO standard concentric orifice plate or flow element 'FE' is manufactured in accordance with ASME MFC-3M, ISO 5167 or AGA 3. It is designed to fit between two flanges and has a bevelled bore of exacting size and thickness to produce a known, albeit relatively small pressure drop with minimal loss.


Eccentric Orifice Plates

The AVCO eccentric orifice plate is identical to the standard concentric version except that the bore is toward the bottom or top of the line ID. This is ideal for liquids containing sediment and gases entrained within liquids.


Segmental Orifice Plates

The AVCO segmental orifice plate is essentially identical to the eccentric version, except it eliminates damming of foreign material at the pipe sides and gives better drainage. The accuracy, however, is not quite as high, but sustained over a longer period.

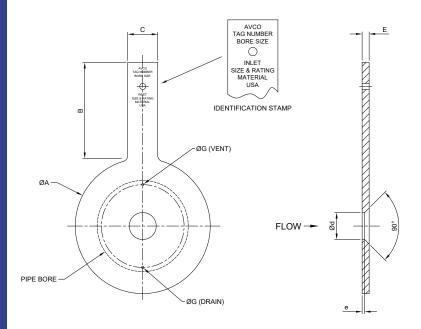

Counterbore Orifice Plates

The AVCO counterbore orifice plate is similar to the standard version except that the throat thickness and pressure recovery is achieved via the counterbore.

Quadrant Bored Orifice Plates

The AVCO quadrant bored orifice plate is relatively immune to the effects of erosion, corrosion and the deposit of solids on the orifice surface. This lends itself to high viscosity liquids or slurries.

Restriction Orifice Plates


The AVCO restriction orifice plates are used to introduce a pressure drop or give choked (critical) flow in a piping system. They are suitable for both liquids and gases and are commonly used for pump back pressure and blow-down systems.

Alloy Valves and Control

Paddle Type Orifice Plates

The AVCO paddle type orifice plates are available in any of the styles on the previous page and are designed to be sandwiched between ANSI rated flanges. These flanges can be standard ANSI flanges where Vena Contracta taps are used or ANSI orifice flanges where flange taps are used. The mating surfaces can be specifically machined with a surface finish to suit gasket requirements and AVCO holds many blanks in stock awaiting machining of the bore for a quick turn around.

The sketch to the left shows a concentric paddle type orifice plate and an associated dimension table. The outside profile is the same for all paddle type orifice styles with only the bore and plate thickness subject to variations. Paddle type orifice plates can be adapted to suit many other flange standards not shown here. Please contact AVCO for further information.

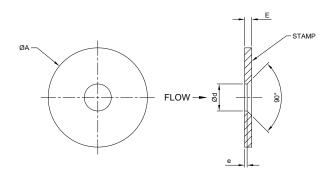
Vent or Drain Selection

A Vent is required in horizontal pipe runs when a liquid is likely to contain entrained gases. A drain is required in horizontal pipe runs when condensate is likely in a gas or vapor stream. The size of the vent or drain is based upon the orifice bore as shown below. If a possibility that the vent or drain can become plugged with dirt or scale exists, then a vertical pipe run should be considered instead using upward flow for liquids with entrained gases and downward flow for gases or vapor with condensate.

Dimensions for Concentric Paddle Type Orifice Plates

LINE SIZE		For ASME	A (in.) E/ANSI B1	6.5 Class		B	C	E	e (')	
(in.)	150	300	600	900	1500	(in.)	(in.)	(in.)	(in.)	
1/2	1 7/8	2 1/8	2 1/8	2 1/2	2 1/2	4	1	1/8	1/32	
3/4	2 1/4	2 5/8	2 5/8	2 3/4	2 3/4	4	1	1/8	1/32	
1	2 5/8	2 7/8	2 7/8	3 1/8	3 1/8	4	1	1/8	1/32	
1 1/2	3 3/8	3 3/4	3 3/4	3 7/8	3 7/8	4	1	1/8	1/32	
2	4 1/8	4 3/8	4 3/8	5 5/8	5 5/8	4	1 1/4	1/8	1/32	
3	5 3/8	5 7/8	5 7/8	6 5/8	6 7/8	4	1 1/4	1/8	1/32	
4	6 7/8	7 1/8	7 5/8	8 1/8	8 1/4	4	1 1/4	1/8	1/16	
6	8 3/4	9 7/8	10 1/2	11 3/8	11 1/8	5	1 1/4	1/8	3/32	
8	11	12 1/8	12 5/8	14 1/8	13 7/8	5	1 1/4	1/4	1/8	
10	13 3/8	14 1/4	15 3/4	17 1/8	17 1/8	6	1 1/4	1/4	1/8	
12	16 1/8	16 5/8	18	19 5/8	20 1/2	6	1 1/4	1/4	1/8	
14	17 3/4	19 1/8	19 3/8	20 1/2	22 3/4	6	1 1/4	1/4	1/8	
16	20 1/4	21 1/4	22 1/4	22 5/8	25 1/4	6	1 1/4	3/8	1/4	
18	21 1/2	23 3/8	24	25	27 5/8	6	1 1/4	3/8	1/4	
20	23 3/4	25 5/8	26 3/4	27 3/8	29 5/8	6	1 1/4	3/8	1/4	
24	28 1/8	30 3/8	31	32 7/8	35 1/2	6	1 1/4	1/2	1/4	

Vent & Drain Dimensions

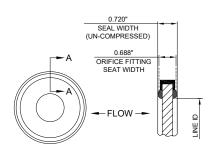

d (in.) Orifice Bore	G (in.) Maximum Diameter
Less than 1.000	Not recommended
1.000 to 3.500	3/32
3.501 to 4.125	1/8
4.126 to 5.000	5/32
5.001 to 6.000	3/16
6.001 to 6.750	7/32
6.751 to 7.500	1/4
7.501 to 8.375	9/32
8.376 to 9.250	5/16
9.251 to 10.000	11/32
10.001 to 10.875	3/8
10.876 to 11.625	13/32
11.626 to 12.500	7/16
12.501 to 13.250	15/32
13.251 and above	1/2

Alloy Valves and Control

Universal Type Orifice Plates

The AVCO universal type orifice plates are available in any of the styles shown on the second page (although segmental is not recommended) and are designed to be used in orifice fittings such as the AVCO Dual Chamber Orifice Fitting. The bore geometry is identical to that of the paddle type orifice plates, but great care has to be taken when eccentric bores or vent/drain holes are included to ensure correct orientation when placed in the fitting.

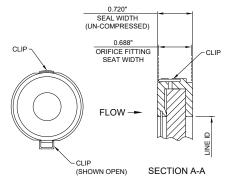
Dimensions for Universal Type Orifice Plates


LINE SIZE (in.)	A (in.)	E (in.)	Blank Weight (lbs)
2	2.437	1/8	0.17
3	3.437	1/8	0.34
4	4.406	1/8	0.55
6	6.437	1/8	1.18
8	8.437	1/8	2.03
10	10.687	1/8	3.25
12	13.079	1/4	9.02
14	14.563	1/4	11.16
16	16.563	1/4	14.58
18	18.563	1/4	18.45
20	20.563	3/8	22.78
24	24.500	3/8	32.80
26	26.750	3/8	62.00
30	30.750	1/2	112.00
34	35.228	1/2	134.00
36	38.000	1/2	156.00

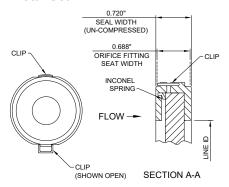
NOTE: Dimension 'A' for sizes 12" and above includes a vulcanized seal as standard. Please inform AVCO if it is not required.

Sealing Units for Universal Type Orifice Plates

AVCO supplies the following sealing units for universal type orifice plates.


Elastomer Seal

SECTION A-A

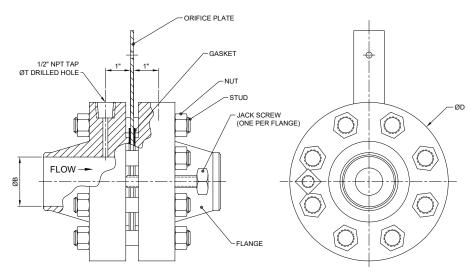

The elastomer seals are removable on line sizes up to 10". Line sizes 12" and above require the seal to be vulcanized to the plate. The seal materials available are: Nitrile, Viton, EPDM, Silicon & PTFE.

Teflon Seal

Teflon seals are suitable for temperatures of -65°F to 500°F. They are primarily used for acidic services and recommended for high pressure orifice fittings above ANSI class 900.

Metal Seal

Metal seals are best suited to high temperature service between 500°F & 1200°F and are manufactured from SS 316 with inconel springs. We also have a patented integral orifice seal for special service.



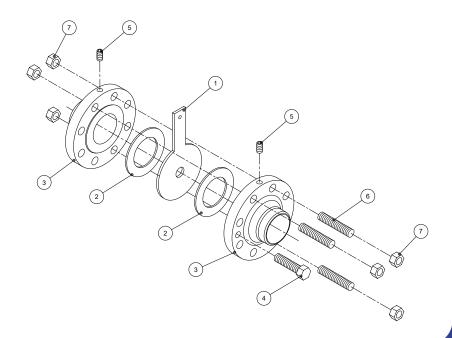
Alloy Valves and Control

Orifice Flange Sets

AVCO supplies complete orifice flange sets with all components required to install a paddle type orifice plate in the pipeline. We supply many styles including weld neck, NPT & socket weld in raised face and RTJ types.

Due to the vast range we have only shown the popular ANSI class 300 weld neck raised face flange set as a typical example of what is supplied in a set. Please contact AVCO for other flange types and styles.

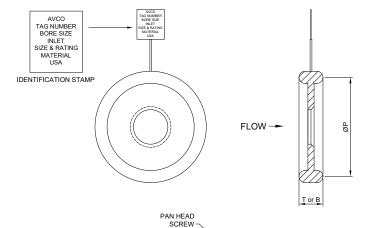
Important Note about Orifice Flange Bore

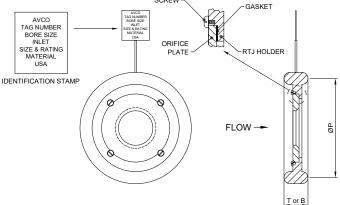

AVCO supplies flanges conforming to ASME B16.36, which states the orifice bore tolerance shall be +/-0.5% and we can supply these in standard pipe schedule bores. However, ASME MFC-3M, AGA 3 and ISO 5167 require the bore immediately upstream of the orifice plate to be within +/- 0.3% or +/- 0.25% of the mean measured bore (Dm). To achieve this it is important to select an undersize bore and machine it or specify the actual required bore and we will supply it machined within +/- 0.25% for which additional charges will apply.

Flange Set Data for Class 300 Raised Face Weld Neck Flanges

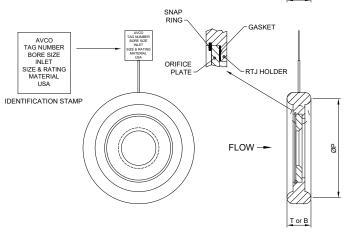
LINE SIZE (in.)	В	Bore Tolerance	T (in.)	Approx. Weight (lbs)
1/2	er	ng	1/4	10
3/4	ific p	oendi	1/4	10
1	spec	dep %	1/4	18
1 1/2	or job int sta	0.25% s	1/4	25
2	zed o	r +/- (ment	3/8	27
3	dersi d in r	3% o quire	3/8	43
4	d, un ecifie	+/- 0. hd re	1/2	66
6	andar as sp	ard, ds ar	1/2	106
8	as sta Om) a	stand	1/2	152
10	bore ent (I	cify +/- 0.5% as standard, +/- 0.3% or +/- 0 upon relevant standards and requirements	1/2	216
12	dule	- 0.5% eleva	1/2	327
14	sche	ify +/- pon r	1/2	448
16	pipe ean r	n neds	1/2	596
18	d to suit pipe schedule bore as standard, undersized or job specific actual mean measurement (Dm) as specified in relevant standards	er to	1/2	741
20	Sized to suit pipe schedule bore as standard, undersized or job specific per actual mean measurement (Dm) as specified in relevant standards	Customer to specify +/- 0.5% as standard, +/- 0.3% or +/- 0.25% depending upon relevant standards and requirements	1/2	887
24	Si <u>z</u>	Cn	1/2	1311

Material Choices

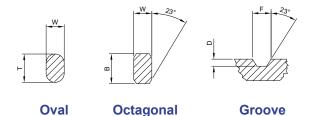

Item	Description	Materials		
1	Orifice Plate	SS 316 Alloy 20 Monel Hastelloy C		
2	Gaskets	Non Asbestos Flexitallic PTFE		
3	Flanges	Carbon Steel SS 316 Alloy 20 Monel Hastelloy C		
4	Jack Screws	Carbon Steel Stainless Steel		
5	Pipe Plugs	Carbon Steel Stainless Steel		
6	Studs	ASTM A193 Grade B7 ASTM A320 Grade B8M		
7	Nuts	ASTM A194 Grade 2H ASTM A194 Grade 8M		


Alloy Valves and Control

Ring Type Joint Holders


Integral Type

The integral type RTJ orifice is produced in either oval or octagonal designs and is the most common and effective style. It is a one piece design giving rise to a reliable installation. Replacement costs are higher when compared with removable types as the entire ring requires changing.


Screw Type

The screw type RTJ orifice holder is produced in either oval or octagonal designs with a removable universal style orifice plate. This plate is held in place with screws and uses a gasket seal, which can possibly give differential leakage. It is important that the unit be installed correctly as it is possible for the plate to become dislodged downstream if installed backwards.

Snap Ring Type

The snap ring type RTJ orifice holder is produced in either oval or octagonal designs with a removable universal type orifice plate. This plate is held in place with a snap ring and gives a greater risk of differential leakage than that of the screw type, but is more forgiving if installed backwards as it is unlikely the plate can be dislodged. This style is the least popular.

Standard Ring & Groove Geometry

The RTJ ring geometry and tolerances used in the AVCO RTJ holders follow all industry practices and are fully interchangeable.

Dimensions for Class 300 & 600 RTJ Holders

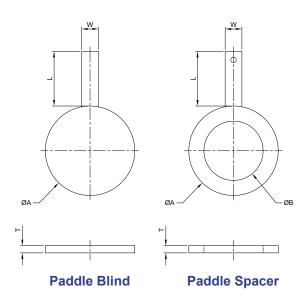
Line			Ri	ng Dimensio	ns		Groove D	imensions	Distance
Size (in.)	Ring No.	T (in.)	B (in.)	W (in.)	C (in.)	P (in.)	F (in.)	D (in.)	Between Flanges (in.)
1/2	R11	29/32	31/32	1/4	0.170	1 11/32	9/32	7/32	19/32
3/4	R13	1	1 1/16	5/16	0.206	1 11/16	11/32	1/4	19/32
1	R16	1	1 1/16	5/16	0.206	2	11/32	1/4	19/32
1 1/2	R20	1	1 1/16	5/16	0.206	2 11/16	11/32	1/4	19/32
2	R23	1 1/16	1 1/8	7/16	0.305	3 1/4	15/32	5/16	5/8
3	R31	1 1/16	1 1/8	7/16	0.305	4 7/8	15/32	5/16	5/8
4	R37	1 1/16	1 1/8	7/16	0.305	5 7/8	15/32	5/16	5/8
6	R45	1 1/16	1 1/8	7/16	0.305	8 5/16	15/32	5/16	5/8
8	R49	1 1/16	1 1/8	7/16	0.305	10 5/8	15/32	5/16	5/8
10	R53	1 1/16	1 1/8	7/16	0.305	12 3/4	15/32	5/16	5/8
12	R57	1 1/16	1 1/8	7/16	0.305	15	15/32	5/16	5/8
14	R61	1 1/16	1 1/8	7/16	0.305	16 1/2	15/32	5/16	5/8
16	R65	1 3/16	1 1/4	7/16	0.305	18 1/2	15/32	5/16	3/4
18	R69	1 3/16	1 1/4	7/16	0.305	21	15/32	5/16	3/4
20	R73	1 1/4	1 5/16	1/2	0.341	23	17/32	3/8	3/4
24	R77	1 7/16	1 1/2	5/8	0.413	27 1/4	21/32	7/16	13/16

NOTE: Screw & snap ring type RTJ holders are not available for sizes 1 1/2" & below - these can only be supplied as integral.

Dimensions for Class 900 RTJ Holders

Line			Ri	ng Dimensio	ns		Groove Di	imensions	Distance
Size (in.)	Ring No.	T (in.)	B (in.)	W (in.)	C (in.)	P (in.)	F (in.)	D (in.)	Between Flanges (in.)
1/2	R12	1	1 1/16	5/16	0.206	1 9/16	11/32	1/4	19/32
3/4	R14	1	1 1/16	5/16	0.206	1 3/4	11/32	1/4	19/32
1	R16	1	1 1/16	5/16	0.206	2	11/32	1/4	19/32
1 1/2	R20	1	1 1/16	5/16	0.206	2 11/16	11/32	1/4	19/32
2	R24	1 1/16	1 1/8	7/16	0.305	3 3/4	15/32	5/16	5/8
3	R31	1 1/16	1 1/8	7/16	0.305	4 7/8	15/32	5/16	5/8
4	R37	1 1/16	1 1/8	7/16	0.305	5 7/8	15/32	5/16	5/8
6	R45	1 1/16	1 1/8	7/16	0.305	8 5/16	17/32	3/8	5/8
8	R49	1 1/16	1 1/8	7/16	0.305	10 5/8	21/32	7/16	5/8
10	R53	1 1/16	1 1/8	7/16	0.305	12 3/4	21/32	7/16	5/8
12	R57	1 1/16	1 1/8	7/16	0.305	15	29/32	9/16	5/8
14	R62	1 5/16	1 3/8	5/8	0.413	16 1/2	1 1/16	5/8	11/16
16	R66	1 7/16	1 1/2	5/8	0.413	18 1/2	1 3/16	11/16	13/16
18	R70	1 9/16	1 5/8	3/4	0.485	21	1 3/16	11/16	15/16
20	R74	1 9/16	1 5/8	3/4	0.485	23	1 5/16	11/16	15/16
24	R78	1 7/8	1 15/16	1	0.681	27 1/4	1 7/16	13/16	15/16

NOTE: Screw & snap ring type RTJ holders are not available for sizes 1 1/2" & below - these can only be supplied as integral.



Alloy Valves and Control

Paddle Blinds & Spacers

AVCO manufactures paddle blinds, spacers & figure 8 (spectacle blinds) per API standard 590 in carbon steel ASTM A516 grade 70 and ASTM A515 grade 70 materials.

A paddle blind is most commonly used between two flanges as a means of isolating flow when piping downstream is being constructed or maintained. A spacer is inserted upon completion of the works to allow flow to resume. The figure 8 (spectacle) blind is essentially the same except that it is single piece and rotated from blind to spacer as required. This ensures that equipment is securely blanked off to protect those working on piping systems and are often included as permanent fixtures. This allows for other sections of the upstream piping network to be brought online during construction or maintenance, whilst ensuring absolute safety.

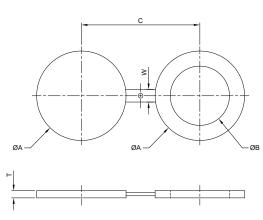


Figure 8 (Spectacle) Blind

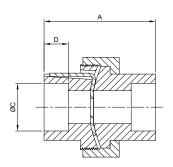
ANSI Class 150 Blinds

Line Size (in.)	A (in.)	B (in.)	C (in.)	T (in.)	L (in.)	W (in.)
1	2 1/2	1 1/8	3 1/8	1/4	4	1
1 1/2	3 1/4	1 5/8	3 7/8	1/4	4	1
2	4	2 1/8	4 3/4	1/4	4	1
2 1/2	4 3/4	2 1/2	5 1/2	1/4	4	1
3	5 1/4	3 1/8	6	1/4	4	1
4	6 3/4	4 1/8	7 1/2	3/8	4	1
6	8 5/8	6 1/8	9 1/2	1/2	4	1
8	10 7/8	8	11 3/4	1/2	4	1
10	13 1/4	10 1/8	14 1/4	5/8	5	1
12	16	12	17	3/4	5	1
14	17 1/2	13 1/4	18 3/4	3/4	5	1
16	20 1/8	15 1/4	21 1/4	7/8	5	1 1/2
18	21 1/2	17 1/4	22 3/4	1	5	1 1/2
20	23 3/4	19 1/4	25	1 1/8	5	1 1/2
24	28 1/8	23 1/4	29 1/2	1 1/4	5	1 1/2

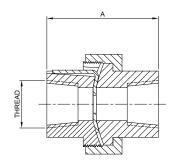
ANSI Class 300 Blinds

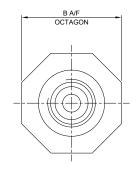
Line Size (in.)	A (in.)	B (in.)	C (in.)	T (in.)	L (in.)	W (in.)
1	2 3/4	1 1/8	3 1/2	1/4	4	1
1 1/2	3 5/8	1 5/8	4 1/2	1/4	4	1
2	4 1/4	2 1/8	5	3/8	4	1
2 1/2	5	2 1/2	5 7/8	3/8	4	1
3	5 3/4	3 1/8	6 5/8	3/8	4	1
4	7	4 1/8	7 7/8	1/2	4	1
6	9 3/4	6 1/8	10 5/8	5/8	4	1
8	12	8	13	7/8	4	1
10	14 1/8	10 1/8	15 1/4	1	5	1
12	16 1/2	12	17 3/4	1 1/8	5	1 1/2
14	19	13 1/4	20 1/4	1 1/4	5	1 1/2
16	21 1/8	15 1/4	22 1/2	1 1/2	5	1 1/2
18	23 3/8	17 1/4	24 3/4	1 5/8	5	1 1/2
20	25 5/8	19 1/4	27	1 3/4	5	1 1/2
24	30 3/8	23 1/4	32	2	5	1 1/2

Alloy Valves and Control


Restriction Unions & Flow Restrictors

AVCO manufactures a number of different restriction unions and flow restrictors in various styles. These are used in piping systems typically less than 2" where the use of flanges is prohibitive or not available. We carry a large range covering female NPT/socket weld, male NPT, compression fittings & AN fittings.


For choked flow it is often overlooked that standard restriction unions are not sufficient. AVCO has in depth knowledge of flow restriction and has developed a number of different styles to ensure flow is properly restricted. For gases the throat length must be between 1 and 6 times the orifice bore for choking to occur. In liquids choking will occur across a standard plate, but cavitation due to the high pressure drop will cause noise and possible damage to upstream piping. To alleviate this the throat length should be somewhere around 6 times the orifice bore thus containing the cavitation zone and eliminating the requirement for frequent replacement.

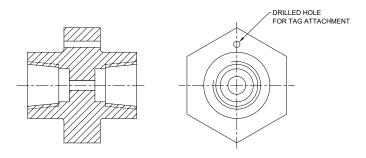

Female Pressure Restriction Unions

These unions are primarily used in small bore piping under 2" for pressure restriction. They comprise of 4 pieces; an upstream end, a downstream end, an assembly nut and an orifice plate with integral identification tab. These unions are bidirectional and easily installed.

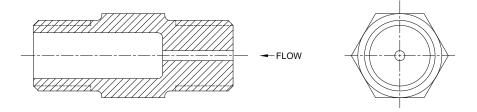
Socket Weld Restriction Union

Threaded NPT Restriction Union

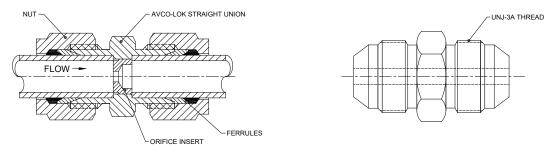
3000# Union Dimensions


Line Size (in.)	A (in.)	B (in.)	C (in.)	D (in.)	Thread
1/4	1.75	1.37	0.560	0.44	1/4 NPT
3/8	1.91	1.56	0.695	0.44	3/8 NPT
1/2	2.06	1.79	0.860	0.44	1/2 NPT
3/4	2.38	2.19	1.070	0.56	3/4 NPT
1	2.50	2.57	1.335	0.56	1 NPT
1 1/4	2.94	3.10	1.680	0.56	1 1/4 NPT
1 1/2	3.06	3.44	1.920	0.56	1 1/2 NPT
2	3.56	4.08	2.410	0.69	2 NPT

Alloy Valves and Control


Female Flow Restriction Hex Pipe Coupling

The AVCO female flow restriction hex pipe coupling is better suited to gases for choked flow as the longer throat length required for liquids is prohibitive in this design style. The one piece construction is easily installed in the same way as any other coupling and can be readily replaced if so needed and it is also bidirectional thus preventing incorrect installation. This style is only supplied as NPT due to the one piece nature and the need for possible replacement. The available size range is 1/4" thru 2".

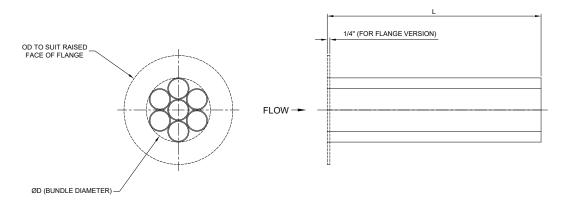

Male Flow Restriction Hex Pipe Nipple

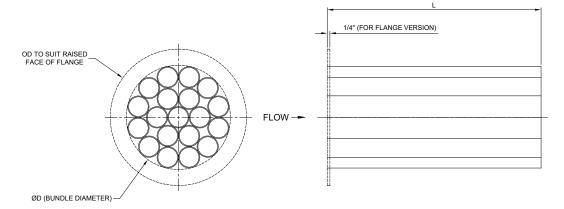
The AVCO male flow restriction hex pipe nipple is suited to both gases and liquids as the throat length can easily exceed the 6 times orifice bore diameter required to contain the cavitation zone. The one piece construction is simple to install, but only available in NPT threaded versions to allow for replacement if necessary. The available sizes are 1/4" thru 2".

Restriction Union Tube Fittings

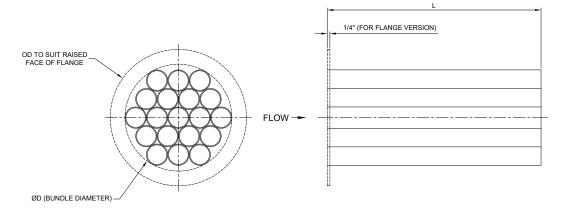
AVCO also manufactures restriction unions in AVCO-LOK (compression fitting) and AN flared type fittings for the aerospace and military sectors. These fittings are manufactured to the highest standards such as SAE J514 with the AN fittings having the added feature of a UNJ-3A style thread form. They can be used for flow or pressure restriction and are installed just like any other tube fitting making them highly versatile.

AVCO-LOK Compression Style


AN Flared Fitting Style


Alloy Valves and Control

Flow Straightener

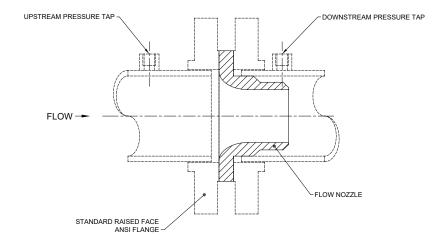

One of the most important criteria for accurate flow measurement is a long length of straight pipe run upstream of the orifice plate. This is required to remove swirl and create an acceptable flow profile, but with lengths required as much as 75 times the pipe diameter per ASME MFC-3M, it is often impractical and prohibitive to achieve such long lengths. A flow straightener provides a simple solution by allowing the lengths to be almost halved, whilst achieving the same results. These can be supplied as flange mounted or line mounted via set screws and installation locations are described in AGA 3, ASME MFC-3M and ISO 5167.

Tube Bundle Type I

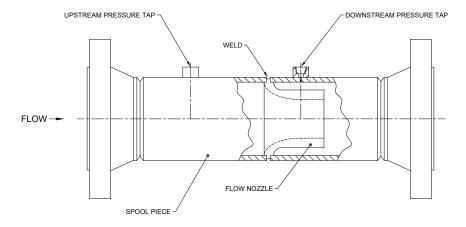
Tube Bundle Type II

Tube Bundle Type III

Dimensions for Flow Straightener Tube Bundles


LINE				To Fit	OD of	Tube			Line Mo	Line Model			
SIZE (in.)	Bundle Type	L (in.)	D (in.)	Pipe Sch	Tubes (in.)	Wall (in.)	No. of Tubes	No. of Screws	Screw Thread	Screw Length (in.)	Weight (lbs)	Weight (lbs)	
2	I	6	1 31/32	sch 40	21/32	0.095	7	1	3/8-16 UNC	1	2	2.5	
2	I	6	1 7/8	sch 80	21/32	0.095	7	1	3/8-16 UNC	1	2	2.5	
3	П	8	2 7/8	sch 40	19/32	0.049	19	1	3/8-16 UNC	1	3	4	
3	П	8	2 3/4	sch 80	9/16	0.049	19	1	3/8-16 UNC	1	3	4	
4	П	10	3 31/32	sch 40	13/16	0.049	19	1	3/8-16 UNC	1	6.5	7.5	
4	III	10	3 3/4	sch 80	3/4	0.049	19	1	3/8-16 UNC	1 1/4	6.5	7.5	
6	Ш	12	5 15/16	sch 40	1 7/32	0.049	19	1	1/2-13 UNC	1 1/4	18.5	20.5	
0	П	12	5 5/8	sch 80	1 5/32	0.049	19	1	1/2-13 UNC	1 1/4	18.5	20.5	
	Ш	16	7 29/32	sch 30	1 5/8	0.065	19	1	1/2-13 UNC	1 1/4	34.5	37	
8	II	16	7 29/32	sch 40	1 5/8	0.065	19	1	1/2-13 UNC	1 1/4	34.5	37	
10	III	20	10	sch 30	2	0.083	19	1	1/2-13 UNC	1 1/4	53.5	57	
10	II	20	9 3/4	sch 40	2	0.083	19	1	1/2-13 UNC	1 1/4	53.5	57	
	III	24	11 7/8	sch 30	2 3/8	0.083	19	2	1/2-13 UNC	1 1/2	77	81	
12	III	24	11 7/8	STD	2 3/8	0.083	19	2	1/2-13 UNC	1 1/2	77	81	
	II	24	11 5/8	sch 40	2 3/8	0.083	19	2	1/2-13 UNC	1 1/2	77	81	
14	III	28	13 1/8	STD	2 5/8	0.083	19	2	1/2-13 UNC	1 1/2	100	105	
14	II	28	12 3/4	xs	2 5/8	0.083	19	2	1/2-13 UNC	1 1/2	100	105	
16	III	32	15	STD	3	0.188	19	2	1/2-13 UNC	1 3/4	268	274	
10	II	32	14 19/32	xs	3	0.188	19	2	1/2-13 UNC	1 1/2	268	274	
18	П	36	17 1/32	STD	3 1/2	0.188	19	2	1/2-13 UNC	1 1/4	378	386	
20	Ш	40	18 27/32	STD	3 7/8	0.188	19	2	1/2-13 UNC	1 1/4	468	477	
24	П	48	23 1/8	STD	4 3/4	0.188	19	2	1/2-13 UNC	1 1/4	693	704	
26	III	52	25	STD	5	0.188	19	2	1/2-13 UNC	1 1/2	796	814	
30	Ш	60	28 3/4	STD	5 3/4	0.188	19	2	1/2-13 UNC	1 1/2	1273	1295	
34	П	68	32 13/16	STD	6 3/4	0.250	19	2	1/2-13 UNC	1 1/2	1860	1880	
36	III	72	35	STD	7	0.188	19	2	1/2-13 UNC	1 1/2	1559	1582	

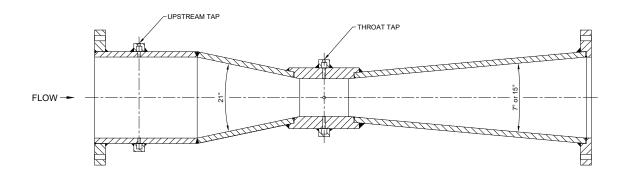
 $AVCO\ can\ also\ supply\ other\ styles\ of\ flow\ conditioners\ -\ please\ contact\ sales@avcovalve.com\ for\ more\ information.$



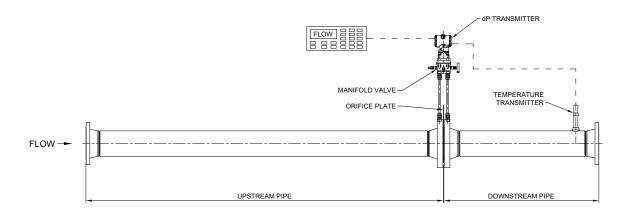
Flow Nozzles

Flow nozzles are particularly suited to high velocities and temperatures often encountered in steam flow. They are inherently more expensive to manufacture than a standard orifice plate, but are dimensionally more stable and give longer life at the higher velocities. There are 3 main styles of flow nozzle; ASME long radius nozzle, ISA 1932 nozzle and the venturi nozzle. AVCO supplies the nozzles as a single item, normally flanged, or pre-installed in a flanged spool piece with pressure taps added in the correct locations. The flow nozzles meet all relevant industry standards such as ASME MFC-3M.

Flanged Flow Nozzle (Shown installed between flanges)


Flanged Spool Piece with Integral Flow Nozzle & Pressure Taps

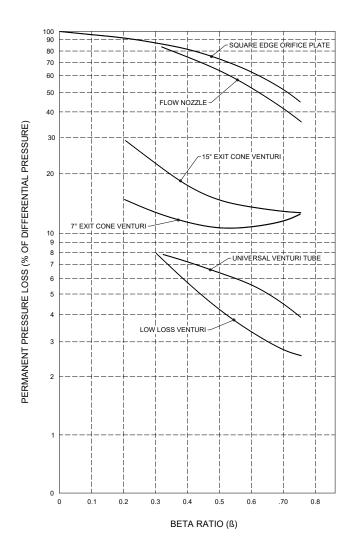
Alloy Valves and Control


ASME Venturi Tubes

Venturi tubes are particularly suited to applications where pressure loss needs to be kept to a minimum when flow measurement is required due to the high degree of pressure recovery. They also have the added advantage of a flow nozzle with low susceptibility to erosion. Typical accuracy ranges between ±0.25% and ±1% for full scale flow measurement. There are three styles of ASME venturi tube; 'as-cast' convergent section, machined convergent section and rough welded convergent section. AVCO supplies the machined and rough welded versions.

AVCO Meter Runs

AVCO fabricates complete meter runs per AGA 3, ASME MFC-3M or ISO 5167 standards as a total solution to your flow measurement needs and they are supplied fully assembled, tested and calibrated. The upstream and downstream pipe lengths are sized to suit the particular application, including flow straighteners if necessary and we only select the best quality pipe for roundness and straightness. Because AVCO believes in flexibility, we also supply the meter runs without the valve manifold, dP transmitter, temperature transmitter or flow computer to enable the customer to use their own preferred brands or even have us use their preferred brands.


Honed Flow Meter Runs

For relatively small bore meter runs up to 2" in size, accuracy is affected quite dramatically by imperfections in standard pipe bores due to irregularities in surface finish, roughness, straightness and roundness. To overcome these problems, AVCO uses honed pipes with a surface finish of 5 to 10 RMS and a tolerance of ± 0.001 ". This gives accuracies of $\pm 0.75\%$ or even $\pm 0.25\%$ with flow calibration. All other elements are similar to that of a standard meter run. These honed flow meter runs meet the requirements of ASME MFC-14M.

Pressure Loss

Due to the nature of the differential pressure method of calculating flow, there is an inherent permanent pressure loss in the system. Common applications use a differential pressure scale of around 100" water column with an actual pressure loss of around 70" water column and can normally be absorbed by the system. This is not always feasible, especially in low pressure systems and the permanent pressure loss becomes an important factor. The graph below shows how the different types of differential pressure device affect the permanent pressure loss in the system and acts as an aid to selecting the correct device for the application.

Engineering Services

AVCO has many years experience in flow control and our design team can size the required orifice bore for flow measurement, pressure restriction or flow restriction. We use modern orifice sizing programs for all calculations and are fully conversant with the requirements of AGA 3, ASME MFC-3M and ISO 5167. We have worked closely with recognized experts in the field of flow measurement and often become involved in flow measurement software improvement and testing. We can also determine best practice for installation requirements to ensure recommended straight pipe runs are adequate for the flow accuracy required which is affected by upstream conditions.

FLOW MEASUREMENT DATA SHEET

Company	Date	
Address	Phone Number	
PO Number	Email	

Tag Number										
Element Type (s	elect all that apply	/)								
Orifice		Choked Flow		Flange Taps		Vena Contracta Taps				
		Restriction (Pipe Taps)		Quadrant		Conic				
		Segmental			Eccentric		Honed Run			
Venturi		Machined Inlet			Rough Welded	Inlet				
		7 Degree Exit			15 Degree Exit					
Nozzle		ASME Long Radius			ASME Throat Tap		with Diffuser			
		ISO (ISA 1932)			Venturi Nozzle					
Required Standa	ards									
Element Materia	I									
Pipe Material										
Pipe Data		Nominal Size or OD			Pipe Schedule	or ID				
Media State										
Media Name or	Description									
Flowing Upstream Pressure										
Atmospheric Pressure										
Flowing Temperature										
Flow conditions (enter at least two)	Flow	Maximum			Normal					
	Pressure Drop	Maximum Differential for Meter or I			Required Pressui	re Drop				
	Orifice Bore									
Media Properties (if non- standard) Enter as many properties as possible		Flow Density			Base Density					
		Viscosity				Vapor Press.				
		Base S.G			Flowing S.G		Cp/Cv	(gas)		
		Compressibility Factor (gas only)		Base	Flowing		g			
		Liquid Compressibility			Molecular Weight (gas only)					
Vent or Drain Required										
Notes										

Copyright © 2011 Alloy Valves and Control Inc. All rights reserved. No part of this brochure may be used or reproduced in any manner whatsoever without written permission from AVCO

This brochure is general in nature and we reserve the right to alter dimensions, materials or make design improvements.